announcements:

- HW1 posted on cowrie website (note it is different them the one posted for MA It $1205 O B$). Due Mon. $25 / 9$ on Graclesepe $11: 5$ pm.
QI. $K:=\{s+t \sqrt{2} i s, t \in \mathbb{R}\}$ Show that:

1) if $x_{1}, x_{2} \in K$, then $x_{1}+x_{2}, x_{1} \cdot x_{2} \in K$
2) if $x \neq 0, x \in K$, then $\frac{1}{x} \in K$.

P:

$$
c_{1}=s_{1}+t_{1} \sqrt{2}, \quad x_{2}=s_{2}+t_{2} \sqrt{2}, \quad x_{1}+x_{2}=s_{1}+t_{1} \sqrt{2}+s_{2}+t_{2} \sqrt{2}
$$

(al) comututity $^{\text {a }}=s_{1}+s_{2}+t_{1} \sqrt{2}+t_{2} \sqrt{2}$
(d) $\underset{\substack{n} \underset{Q}{=} s_{1}+s_{2}+\left(t_{1}+t_{2}\right) \sqrt{2} \in K_{1},}{ }$

$$
\begin{aligned}
x_{1} x_{2}=\left(s_{1}+t_{1} \sqrt{2}\right)\left(s_{2}+t_{2} \sqrt{2}\right) & =s_{1} s_{2}+s_{1} t_{2} \sqrt{2}+s_{2} t_{1} \sqrt{2}+t_{1} t_{2} \sqrt{2} \sqrt{2}^{2} \\
& =s_{1} s_{2}+2 t_{1} t_{2}+\left(s_{1} t_{2}+s_{2} t_{1}\right) \sqrt{2} \in K
\end{aligned}
$$

$$
\begin{aligned}
& x \neq 0 \Rightarrow \text { at least } s \neq 0 \text { or } t \neq 01 \\
& \frac{1}{x}=\frac{1}{s+t \sqrt{2}} \cdot \frac{s-t \sqrt{2}}{s-t \sqrt{2}} \\
&=\frac{s-t \sqrt{2}}{s^{2}-2 t^{2}}=\frac{s}{s^{2}-2 t^{2}}-\frac{t}{s-2 t^{2}} \sqrt{2} \in K, \\
& Q
\end{aligned}
$$

Thin shows, that there is a ordered subfield $\mathbb{Q} \subseteq K \subset \mathbb{R}$
Q2. Show the following 2 statements are equivedenit: for 5 nonempty, 4 an upper band
i) if v is ans upper bowel of S, then $u \leqslant v$,
2) if $\varepsilon>0$, then there exists $s_{\varepsilon} \in S s \cdot t, u-\varepsilon<S_{\varepsilon}$,

Pf: $(1) \Rightarrow(2)$ Suppose u satisfies (1). let $\varepsilon>0$ be guin. Cleanly $u-\varepsilon<u$. So by (1), $u-\varepsilon$ is not an upper

band of S. (Tali contrapositive of (1): $P \Rightarrow Q \Leftrightarrow \rightarrow Q \Rightarrow P)_{j}$ Since $u-\varepsilon$ is not an upper loaned of S, there exists some $s_{\varepsilon} \in S$ st. $u-\varepsilon<s_{\varepsilon}$
$(2) \Rightarrow(1)$ Suppose a ratifies (2). Let v be an upper bound of S, Suppose on the contrary the nt $v<u$. Tali y $v_{1}=u-v$, So boy (2), there is an $s_{\varepsilon} \in S$, set.

$$
S \ni S_{\varepsilon}>u-\varepsilon_{0}=u-(u-v)=v, \text { so } v<s_{\varepsilon} \in S \text {; }
$$

which contradicts the fact that v is an upper bour of S.

$$
\Rightarrow u \leqslant v_{1}
$$

23. X, Y non-empty, $h: X \times Y \rightarrow(-\infty, \infty)$ have loaveled range.

$$
\begin{aligned}
& f: X \rightarrow \mathbb{R} \text { by } f(x)=\sup \{h(x, y): y \in Y\} \\
& g: Y \rightarrow \mathbb{R} \text { by } g(y)==\operatorname{mf}\{h(x, y): x \in X\}
\end{aligned}
$$

Show the nt $\sup _{y \in y} g(y) \leqslant \inf _{x \in X} f(x)$
 $2.4 .9,2.4 .10$ explore examples)
Pf: By definition of $f, g, \quad \forall x \in X, y \in Y$,

$$
g(y) \leqslant h(x, y) \leqslant f(x)
$$

"Take infimm over x "; Fix y. Then $g(y) \leqslant f(x)$. So in particular, by doff of infiimin as grecectest love bond, inf $\{f(x): x \in X\}$.
"Tue sup on $y^{\prime \prime}: g(y) \leqslant \operatorname{mif}_{x \in X} f(x) \leqslant f(x)$.
Since this is true foreach y, $\operatorname{iff}_{x \in X} f(x)$ is an upper boonal for $\{g(Y) y \in Y\}$, then by def'n of supreminn as lecest upper bound

$$
g(y) \leqslant \sup _{y \in Y} g(y) \leqslant \operatorname{mf}_{x \in X} f(x)
$$

